342 research outputs found

    Viscosity in the excluded volume hadron gas model

    Full text link
    The shear viscosity η\eta in the van der Waals excluded volume hadron-resonance gas model is considered. For the shear viscosity the result of the non-relativistic gas of hard-core particles is extended to the mixture of particles with different masses, but equal values of hard-core radius r. The relativistic corrections to hadron average momenta in thermal equilibrium are also taken into account. The ratio of the viscosity η\eta to the entropy density s is studied. It monotonously decreases along the chemical freeze-out line in nucleus-nucleus collisions with increasing collision energy. As a function of hard-core radius r, a broad minimum of the ratio η/s≈0.3\eta/s\approx 0.3 near r≈0.5r \approx 0.5 fm is found at high collision energies. For the charge-neutral system at T=Tc=180T=T_c=180 MeV, a minimum of the ratio η/s≅0.24\eta/s\cong 0.24 is reached for r≅0.53r\cong 0.53 fm. To justify a hydrodynamic approach to nucleus-nucleus collisions within the hadron phase the restriction from below, r ≥ 0.2r~ \ge ~0.2 fm, on the hard-core hadron radius should be fulfilled in the excluded volume hadron-resonance gas.Comment: 12 pages, 3 figure

    Growth laws and self-similar growth regimes of coarsening two-dimensional foams: Transition from dry to wet limits

    Full text link
    We study the topology and geometry of two dimensional coarsening foams with arbitrary liquid fraction. To interpolate between the dry limit described by von Neumann's law, and the wet limit described by Marqusee equation, the relevant bubble characteristics are the Plateau border radius and a new variable, the effective number of sides. We propose an equation for the individual bubble growth rate as the weighted sum of the growth through bubble-bubble interfaces and through bubble-Plateau borders interfaces. The resulting prediction is successfully tested, without adjustable parameter, using extensive bidimensional Potts model simulations. Simulations also show that a selfsimilar growth regime is observed at any liquid fraction and determine how the average size growth exponent, side number distribution and relative size distribution interpolate between the extreme limits. Applications include concentrated emulsions, grains in polycrystals and other domains with coarsening driven by curvature

    Mapping a Homopolymer onto a Model Fluid

    Full text link
    We describe a linear homopolymer using a Grand Canonical ensemble formalism, a statistical representation that is very convenient for formal manipulations. We investigate the properties of a system where only next neighbor interactions and an external, confining, field are present, and then show how a general pair interaction can be introduced perturbatively, making use of a Mayer expansion. Through a diagrammatic analysis, we shall show how constitutive equations derived for the polymeric system are equivalent to the Ornstein-Zernike and P.Y. equations for a simple fluid, and find the implications of such a mapping for the simple situation of Van der Waals mean field model for the fluid.Comment: 12 pages, 3 figure

    Short Intense Laser Pulse Collapse in Near-Critical Plasma

    Full text link
    It is observed that the interaction of an intense ultra-short laser pulse with an overdense gas jet results in the pulse collapse and the deposition of a significant part of energy in a small and well localized volume in the rising part of the gas jet, where the electrons are efficiently accelerated and heated. A collisionless plasma expansion over 150 microns at a sub-relativistic velocity (~c/3) has been optically monitored in time and space, and attributed to the quasistatic field ionization of the gas associated to the hot electron current. Numerical simulations in good agreement with the observations suggest the acceleration in the collapse region of relativistic electrons, along with the excitation of a sizeable magnetic dipole that sustains the electron current over several picoseconds. Perspectives of ion beam generation at high repetition rate directly from gas jets are discussed

    Laser-plasma interactions with a Fourier-Bessel Particle-in-Cell method

    Full text link
    A new spectral particle-in-cell (PIC) method for plasma modeling is presented and discussed. In the proposed scheme, the Fourier-Bessel transform is used to translate the Maxwell equations to the quasi-cylindrical spectral domain. In this domain, the equations are solved analytically in time, and the spatial derivatives are approximated with high accuracy. In contrast to the finite-difference time domain (FDTD) methods that are commonly used in PIC, the developed method does not produce numerical dispersion, and does not involve grid staggering for the electric and magnetic fields. These features are especially valuable in modeling the wakefield acceleration of particles in plasmas. The proposed algorithm is implemented in the code PLARES-PIC, and the test simulations of laser plasma interactions are compared to the ones done with the quasi-cylindrical FDTD PIC code CALDER-CIRC.Comment: submitted to Phys. Plasma

    Localization in simple multiparticle catalytic absorption model

    Full text link
    We consider the phase transition in the system of n simultaneously developing random walks on the halfline x>=0. All walks are independent on each others in all points except the origin x=0, where the point well is located. The well depth depends on the number of particles simultaneously staying at x=0. We consider the limit n>>1 and show that if the depth growth faster than 3/2 n ln(n) with n, then all random walks become localized simultaneously at the origin. In conclusion we discuss the connection of that problem with the phase transition in the copolymer chain with quenched random sequence of monomers considered in the frameworks of replica approach.Comment: 17 pages in LaTeX, 5 PostScript figures; submitted to J.Phys.(A): Math. Ge

    An analysis of cosmological perturbations in hydrodynamical and field representations

    Get PDF
    Density fluctuations of fluids with negative pressure exhibit decreasing time behaviour in the long wavelength limit, but are strongly unstable in the small wavelength limit when a hydrodynamical approach is used. On the other hand, the corresponding gravitational waves are well behaved. We verify that the instabilities present in density fluctuations are due essentially to the hydrodynamical representation; if we turn to a field representation that lead to the same background behaviour, the instabilities are no more present. In the long wavelength limit, both approachs give the same results. We show also that this inequivalence between background and perturbative level is a feature of negative pressure fluid. When the fluid has positive pressure, the hydrodynamical representation leads to the same behaviour as the field representation both at the background and perturbative levels.Comment: Latex file, 18 page

    Characterization of defect structures in nanocrystalline materials by X-ray line profile analysis

    Get PDF
    X-ray line profile analysis is a powerful alternative tool for determining dislocation densities, dislocation type, crystallite and subgrain size and size-distributions, and planar defects, especially the frequency of twin boundaries and stacking faults. The method is especially useful in the case of submicron grain size or nanocrystalline materials, where X-ray line broadening is a well pronounced effect, and the observation of defects with very large density is often not easy by transmission electron microscopy. The fundamentals of X-ray line broadening are summarized in terms of the different qualitative breadth methods, and the more sophisticated and more quantitative whole pattern fitting procedures. The efficiency and practical use of X-ray line profile analysis is shown by discussing its applications to metallic, ceramic, diamond-like and polymer nanomaterials

    The costs of functional gastrointestinal disorders and related signs and symptoms in infants: a systematic literature review and cost calculation for England

    Get PDF
    OBJECTIVES: To estimate the cost of functional gastrointestinal disorders (FGIDs) and related signs and symptoms in infants to the third party payer and to parents. STUDY DESIGN: To estimate the cost of illness (COI) of infant FGIDs, a two-stage process was applied: a systematic literature review and a COI calculation. As no pertinent papers were found in the systematic literature review, a 'de novo' analysis was performed. For the latter, the potential costs for the third party payer (the National Health Service (NHS) in England) and for parents/carers for the treatment of FGIDs in infants were calculated, by using publicly available data. In constructing the calculation, estimates and assumptions (where necessary) were chosen to provide a lower bound (minimum) of the potential overall cost. In doing so, the interpretation of the calculation is that the true COI can be no lower than that estimated. RESULTS: Our calculation estimated that the total costs of treating FGIDs in infants in England were at least £72.3 million per year in 2014/2015 of which £49.1 million was NHS expenditure on prescriptions, community care and hospital treatment. Parents incurred £23.2 million in costs through purchase of over the counter remedies. CONCLUSIONS: The total cost presented here is likely to be a significant underestimate as only lower bound estimates were used where applicable, and for example, costs of alternative therapies, inpatient treatments or diagnostic tests, and time off work by parents could not be adequately estimated and were omitted from the calculation. The number and kind of prescribed products and products sold over the counter to treat FGIDs suggest that there are gaps between treatment guidelines, which emphasise parental reassurance and nutritional advice, and their implementation

    Long-wavelength approximation for string cosmology with barotropic perfect fluid

    Full text link
    The field equations derived from the low energy string effective action with a matter tensor describing a perfect fluid with a barotropic equation of state are solved iteratively using the long-wavelength approximation, i.e. the field equations are expanded by the number of spatial gradients. In the zero order, a quasi-isotropic solution is presented and compared with the general solution of the pure dilaton gravity. Possible cosmological models are analyzed from the point of view of the pre-big bang scenario. The second order solutions are found and their growing and decaying parts are studied.Comment: 19 pages, 1 figur
    • …
    corecore